MASTER OF ENGINEERING, PLAN C, CHEMICAL ENGINEERING SPECIALIZATION

Master of Engineering, Plan C, Chemical Engineering Specialization is a coursework-based program in which students will learn from worldrenowned experts how to identify, formulate and solve complex chemical engineering problems using principles of engineering, science, and mathematics. Our program equips students with a diverse skill set essential for the next generation of chemical engineering leaders in academia and industry. Students in the program have access to a wide range of graduate-level courses on the state of the art in chemical engineering technologies, including advanced polymeric materials, bioanalytical devices, biomedical science and engineering, systems biology, synthetic biology, and biomanufacturing.

<u>Students interested in graduate work should refer to the</u> Graduate and Professional Bulletin (http://catalog.colostate.edu/general-catalog/graduate-bulletin/)_

Learning Objectives

Upon successful completion of this program, students will be able to:

- 1. Demonstrate technical mastery of the core chemical engineering disciplines of thermodynamics, transport phenomena, and chemical reaction engineering.
- 2. Competently and professionally communicate their work in both written and oral forms.
- 3. Identify, formulate, and solve complex chemical engineering problems by applying principles of engineering, science, and mathematics.
- 4. Assimilate information from other related fields of science and engineering to inform their chemical engineering practice and to expand the areas of application of their chemical engineering expertise.

Requirements Effective Fall 2025

Code	Title	Credits
Core Courses:		7-12
Take the courses be mathematical mod	elow in chemical engineering principles and eling:	12
CBE 501	Chemical Engineering Thermodynamics	
CBE 502	Advanced Reactor Design	
CBE 503	Transport Phenomena Fundamentals	
CBE 521	Mathematical Modeling for Chemical Engineers	
OR the courses below in chemical and biological engineering principles:		
CBE 500	Chem & Biological Engineering Fundamentals	
CBE 504/ BIOM 504	Fundamentals of Biochemical Engineering	
Advanced Statistic	s and Data Science ¹	0-3

	BIOM 422	Quantitative Systems and Synthetic Biology	
	BIOM 526/ ECE 526	Biological Physics	
	BIOM 537/ ECE 537	Biomedical Signal Processing	
	BIOM 570/ MECH 570	Bioengineering	
	BIOM 576/ MECH 576	Quantitative Systems Physiology	
l	BZ 548	Theory of Population and Evolutionary Ecology	
	BZ 562	Computational Approaches in Molecular Ecology	
	CS 528/ECE 528	Embedded Systems and Machine Learning	
	CS 535	Big Data	
	CS 540	Artificial Intelligence	
	CS 545	Machine Learning	
I	DSCI 445	Statistical Machine Learning	
	DSCI 511	Genomics Data Analysis in Python	
	DSCI 512	RNA-Sequencing Data Analysis	
	ENGR 478	Applied Engineering Data Analytics	
	ERHS 535	R Programming for Research	
	HORT 579	Mass Spectrometry Omics-Methods and Analysis	
	MIP 545	Microbial Metagenomics/Genomics Data Analysis	
	MIP 570	Functional Genomics	
3	SOCR 545	Current Methods in Microbial Genomics	
	STAR 511	Design and Data Analysis for Researchers I	
:	STAR 512	Design and Data Analysis for Researchers II	
	STAT 520	Introduction to Probability Theory	
	STAT 540	Data Analysis and Regression	
	STAT 544/ ERHS 544	Biostatistical Methods for Quantitative Data	
	STAT 547/ CIVE 547	Statistics for Environmental Monitoring	
	STAT 560	Applied Multivariate Analysis	
	SYSE 541	Engineering Data Design and Visualization	
	molecular Enginee		0-6
l	CBE 522/ BIOM 522	Bioseparation Processes	
	CBE 524	Bioremediation	
	CBE 540/CIVE 540	Advanced Biological Wastewater Processing	
	CBE 560	Engineering of Protein Expression Systems	
	CBE 570	Biomolecular Engineering/Synthetic Biology	
Bio	ring Laboratory ¹	0-1	
	CBE 505	Biochemical Engineering Laboratory	
Ele	ctives ²		13-18

	5XX - 7XX courses with the course following prefixes: CBE, BIOM, 7-18 MSE, CIVE, ECE, MECH, SYSE, ENGR, AB, AHS, ANEQ, BC, BMS, BTEC, BZ, CM, CHEM, CS, DSCI, ECOL, ESS, ERHS, FSHN, FTEC,		7. Report of preliminary examination (GS Form 16) - (Ph.D. and PD)	Within two working days after results are known
	GEOL, GES, GRAD, HORT, LIFE, MATH, MIP, NB, PH, SOCR, STAR, STAA, STAT 2 $^{\rm 3}$		8. Changes in committee (GS Form 9A)	When change is made
	4XX courses with the course following prefixes: BIOM, MSE, CIVE, ECE, MECH, SYSE, ENGR, AB, AHS, ANEQ, BC, BMS, BTEC, BZ, CM, CHEM, CS, DSCI, ECOL, ESS, ERHS, FSHN, FTEC, GEOL, GES, GRAD, HORT, LIFE, MATH, MIP, NB, PH, SOCR, STAR, STAA, STAT 2 Program Total Credits		9. Application for Graduation (GS Form 25)	Refer to published deadlines from the Graduate School Website
			9a. Reapplication for Graduation (online)	Failure to graduate requires Reapplication for Graduation (online) for the next time term for
				which you are applying
	A minimum of 30 credits are required to complete this program. ¹ Students who choose option (2) in the core courses must take 3 cre	dito	10. Submit thesis or dissertation to committee	At least two weeks prior to the examination or at the discretion of the graduate committee
	in Advanced Statistics and Data Science, 6 credits in Biomolecular Engineering Electives, and 1 credit in Biomolecular Engineering	uits	11. Final examination	Refer to published deadlines from the Graduate School Website

Form 24)

13. Submit a signed Thesis/

Dissertation Submission Form (GS

Form 30) to the Graduate School

and Submit the Survey of Earned

- Laboratory.
- For students who choose option (1) in the core courses, take 18 credits of electives, including any additional courses in the categories listed above.

For students who choose option (2) in the core courses, take 13 credits of electives, including any additional courses in the categories listed above

3 Neither 400-level CBE courses, nor credit for CBE 693 may be used to satisfy the elective requirement for the M.E. program.

Requirements for All Graduate Degrees

For more information, please visit Requirements for All Graduate Degrees (http://catalog.colostate.edu/general-catalog/graduate-bulletin/ graduate-study/procedures-requirements-all-degrees/) in the Graduate and Professional Bulletin (http://catalog.colostate.edu/general-catalog/ graduate-bulletin/).

Summary of Procedures for the Master's and Doctoral Degrees

NOTE: Each semester the Graduate School publishes a schedule of deadlines. Deadlines are available on the Graduate School website (https://graduateschool.colostate.edu/deadline-dates/). Students should consult this schedule whenever they approach important steps in their careers.

Forms (https://graduateschool.colostate.edu/forms/) are available online.

Step	Due Date
1. Application for admission (online)	Six months before first registration
2. Diagnostic examination when required	Before first registration
3. Appointment of advisor	Before first registration
4. Selection of graduate committee	Before the time of fourth regular semester registration
5. Filing of program of study (GS Form 6)	Before the time of fourth regular semester registration
6. Preliminary examination (Ph.D. and PD)	Two terms prior to final examination

Doctorates (Ph.D. only) prior to submitting the electronic thesis/ dissertation	
14. Submit the thesis/dissertation electronically	Refer to published deadlines from the Graduate School website
15. Graduation	Ceremony information is available from the Graduate School website

results are known; refer to

Graduate School website

published deadlines from the

the Graduate School website.

Refer to published deadlines from

12. Report of final examination (GS Within two working days after