MASTER OF SCIENCE IN CIVIL AND ENVIRONMENTAL ENGINEERING, PLAN B

The Master of Science (M.S) is viewed by some employers as the entry-level degree in civil and environmental engineering. The M.S. allows integration of advanced study and research within a variety of subdiscipline areas, including agricultural water management, environmental engineering, geoengineering, hydraulic engineering and environmental fluid mechanics, hydrologic science and engineering, structural engineering and mechanics, water and international development, and water resources planning and management.

The M.S. degree, Plan B, is completed with a professional report requiring 32 graduate course credit hours.

Students interested in graduate work should refer to the Graduate and Professional Bulletin (http://catalog.colostate.edu/general-catalog/graduate-bulletin/).

Learning Objectives

- Use concepts and frameworks to effectively design, analyze, and implement creative solutions to engineering and practical problems using relevant tools and techniques in their chosen focus area within civil and environmental engineering.
- Apply in-depth knowledge and creativity to advance solutions in their chosen focus area within civil and environmental engineering.
- Achieve a level of understanding that will allow them to contribute
 to the advancement of the civil and environmental engineering
 profession in their chosen focus area while demonstrating
 professional behavior and ethics.
- Demonstrate effective oral and written communication skills to convey technical concepts to both technical and non-technical stakeholders.
- Apply technical competencies and applied research to successfully undertake further advanced study at the doctoral level in civil and environmental engineering or a related area.

Requirements Effective Spring 2025

Courses selected for the M.S. Plan B (professional report) option are intended to provide depth of study in a particular area of interest. Selection of courses must be approved by faculty advisor who is supervising the professional report to ensure courses taken complement the professional report. Some areas of focus have 2-4 required courses. Please reference your area of focus for any required courses. Background courses may be required depending on prior degree. Background courses do not count towards your graduate degree requirements.

C	ode	Title	Credits
	Select at least 16 cre Invironmental Engin	dit hours in regular graduate-level Civil and eering courses ¹	16
	CIVE 502	Fluid Mechanics	
	CIVE 505	Structural Inspection, Management and Repair	
	CIVE 506	Wind Effects on Structures	

CIVE 507	Transportation Engineering
CIVE 508	Bridge Engineering
CIVE 510	Applied Hydraulic System Design
CIVE 511	Coastal Engineering
CIVE 512	Irrigation Systems Design
CIVE 513	Morphodynamic Modeling
CIVE 514	Hydraulic Structures/Systems
CIVE 518	Sprinkler and Trickle Irrigation Systems
CIVE 519	Irrigation Water Management
CIVE 520	Physical Hydrology
CIVE 521	Hydrometry
CIVE 524/WR 524	Modeling Watershed Hydrology
CIVE 525	Water Engineering International Development
CIVE 526	Pollution, Exposure, and the Environment
CIVE 527	Tools for Food-Energy-Water Systems Analysis
CIVE 528/GES 528	Assessing the Food, Energy, Water Nexus
CIVE 529	Environmental Organic Chemistry
CIVE 530	Environ Engr at the Water-Energy-Health
	Nexus
CIVE 531	Groundwater Hydrology
CIVE 532	Wells and Pumps
CIVE 533/ BIOM 533	Biomolecular Tools for Engineers
CIVE 534	Applied and Environmental Molecular Biology
CIVE 537	Residuals Management
CIVE 538	Aqueous Chemistry
CIVE 539	Water and Wastewater Analysis
CIVE 540/CBE 540	Advanced Biological Wastewater Processing
CIVE 541	Physical Chemical Water Treatment Processes
CIVE 542	Water Quality Modeling
CIVE 543	Instrumental Environmental Analysis
CIVE 544	Water Resources Planning and
	Management
CIVE 546	Water Resource Systems Analysis
CIVE 547/ STAT 547	Statistics for Environmental Monitoring
CIVE 549	Drainage and Wetland Engineering
CIVE 550	Applications in Geotechnical Engineering
CIVE 551	The Material Point Method
CIVE 555	Mining Geotechnics
CIVE 556	Slope Stability, Seepage, and Earth Dams
CIVE 558	Containment Systems for Waste Disposal
CIVE 559	Special Topics in Geotechnical Engineering
CIVE 560	Advanced Mechanics of Materials
CIVE 561	Advanced Steel Behavior and Design
CIVE 562	Fundamentals of Vibrations
CIVE 564	Principles of Structural Load Modeling
CIVE 565	Finite Element Method
CIVE EGG	Intermediate Structural Analysis

Intermediate Structural Analysis

CIVE 566

	CIVE 567	Advanced Concrete Design	
	CIVE 568	Design of Masonry and Wood Structures	
	CIVE 571	Pipeline Engineering and Hydraulics	
	CIVE 572	Analysis of Urban Water Systems	
	CIVE 573	Urban Stormwater Management	
	CIVE 574	Civil Engineering Project Management	
	CIVE 575	Sustainable Water and Waste Management	
	CIVE 576	Engineering Applications of GIS and GPS	
	CIVE 577	GIS in Civil and Environmental Engineering	
	CIVE 578	Infrastructure and Utility Management	
	CIVE 604	Fluid Turbulence and Modeling	
	CIVE 607	Computational Fluid Dynamics	
	CIVE 610	Special Topics in Hydraulics	
	CIVE 612	Open Channel Flow	
	CIVE 613	River Restoration Design	
	CIVE 622	Risk Analysis of Water/Environmental Systems	
	CIVE 625	Quantitative Eco-Hydrology	
	CIVE 626	Integrated Analysis of Coupled Water Issues	
	CIVE 631	Computational Methods in Subsurface Systems	
	CIVE 638	Groundwater Quality and Contaminant Transport	
	CIVE 645	Computer-Aided Water Management and Control	
	CIVE 655	Advanced Soil Mechanics	
	CIVE 657	Oral Communication in Geo-Engineering	
	CIVE 658	Remediation Systems - Subsurface Contamination	
	CIVE 659	Advanced Topics in Geoengineering	
	CIVE 661	Stochastic Methods in Structural Dynamics	
	CIVE 662	Foundations of Solid Mechanics	
	CIVE 663	Structural Stability	
	CIVE 664	Mechanics of Fatigue and Fracture	
	CIVE 665	Wind Engineering	
	CIVE 667	Advanced Structural Analysis	
	CIVE 668	Structural ReliabilityTheory, Application	
	CIVE 703	Special Topics in Fluid Mechanics	
	CIVE 721	Stochastic Water and Environmental Systems	
	CIVE 724	River Basin Morphology	
	CIVE 742	Advanced Topics in Environmental Engineering	
	CIVE 751	Soil Dynamics	
	CIVE 766	Theory of Plates and Shells	
	CIVE 767	Structural Dynamics and Earthquake Engineering	
S	elect 13-14 3XX-7XX	3	13-14
		ndependent study for use towards the	2-3
	ofessional report re	equirement from the following:	20
	CIVE 695A	Independent Study: Fluid Mechanics and Wind Engineering	
	CIVE 695B	Independent Study: Hydraulics	

CIVE 695C	Independent Study: Hydrologic Science and Engineering
CIVE 695D	Independent Study: Mechanics
CIVE 695E	Independent Study: Geotechnical Engineering
CIVE 695F	Independent Study: Structures
CIVE 695G	Independent Study: Environmental Engineering
CIVE 695H	Independent Study: Water Resource Planning and Management
CIVE 695J	Independent Study: Bioresource and Agricultural Engineering
CIVE 695K	Independent Study: Water and International Development
CIVE 695L	Independent Study: Construction Engineering and Management

Program Total Credits:

32

A minimum of 32 credits are required to complete this program.

- Regular graduate-level Civil and Environmental Engineering courses include courses with a CIVE prefix that are numbered 5XX, 6XX, or 7XX and with the last two digits ranging from 00 through 82 (e.g., CIVE 655).
- Common course prefixes include CIVE, AREC, BZ, CBE, CHEM, CON, CS, DSCI, ECOL, ECE, ERHS, ESS, GEO, GRAD, MATH, MECH, MIP, NR, PBHL, SOCR, STAA, STAT, SYSE, WR.
- The M.S. degree, Plan B, is completed with a professional report. The M.S. degree with a professional report requires 32 graduate course credit hours.

Requirements for All Graduate Degrees

For more information, please visit Requirements for All Graduate Degrees (http://catalog.colostate.edu/general-catalog/graduate-bulletin/graduate-study/procedures-requirements-all-degrees/) in the Graduate and Professional Bulletin (http://catalog.colostate.edu/general-catalog/graduate-bulletin/).

Summary of Procedures for the Master's and Doctoral Degrees

NOTE: Each semester the Graduate School publishes a schedule of deadlines. Deadlines are available on the Graduate School website (https://graduateschool.colostate.edu/deadline-dates/). Students should consult this schedule whenever they approach important steps in their careers.

Forms (https://graduateschool.colostate.edu/forms/) are available online.

Step	Due Date
1. Application for admission (online)	Six months before first registration
2. Diagnostic examination when required	Before first registration
3. Appointment of advisor	Before first registration
4. Selection of graduate committee	Before the time of fourth regular semester registration
5. Filing of program of study (GS Form 6)	Before the time of fourth regular semester registration

6. Preliminary examination (Ph.D. and PD)	Two terms prior to final examination
7. Report of preliminary examination (GS Form 16) - (Ph.D. and PD)	Within two working days after results are known
8. Changes in committee (GS Form 9A)	When change is made
9. Application for Graduation (GS Form 25)	Refer to published deadlines from the Graduate School Website
9a. Reapplication for Graduation (online)	Failure to graduate requires Reapplication for Graduation (online) for the next time term for which you are applying
10. Submit thesis or dissertation to committee	At least two weeks prior to the examination or at the discretion of the graduate committee
11. Final examination	Refer to published deadlines from the Graduate School Website
12. Report of final examination (GS Form 24)	Within two working days after results are known; refer to published deadlines from the Graduate School website
13. Submit a signed Thesis/ Dissertation Submission Form (GS Form 30) to the Graduate School and Submit the Survey of Earned Doctorates (Ph.D. only) prior to submitting the electronic thesis/ dissertation	Refer to published deadlines from the Graduate School website.
14. Submit the thesis/dissertation electronically	Refer to published deadlines from the Graduate School website
15. Graduation	Ceremony information is available from the Graduate School website